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INTRODUCTION

The National Weather Service (NWS) hydrology program provides flood and
daily river forecasts to the general public. Thirteen River Forecast Centers
prepare the forecasts for dissemination throughout the United States.

In the late 1960's the NWS Hydrologic Research Laboratory began developing
the National Weather Service River Forecast System (NWSRFS) which is based on a
conceptual soil-moisture catchment model (Burnash, et al., 1973) and a snow accu-—
mulation—ablation model (Anderson, 1973). Where the runoff generated by the com
ceptual models aggregates in fairly large, well-defined channels (rivers), it is
transmitted downstream by unsteady flow routing techniques of the hydrologic or
storage routing variety. Although these routing techniques function adequately in
many locations, they have serious shortcomings when the unsteady flows are sub-
jected to backwater effects due to reservoirs, tides, or inflows from large trib—
utaries. Also, when effective hydraulic slopes of the rivers are quite mild, the
flow inertial effects ignored in the hydrolgic techniques become important. Also,
highly transient flows resulting from dambreaks which usually greatly exceed the
flood-of-record are not treated adequately by the hydrologic routing methods.

To improve the routing capabilities within the NWSRFS, the Hydrologic
Research Laboratory in the early 1970's began developing numerical hydrodynamic
models suitable for efficient operational use in a wide variety of applications.
.Two basic models have been developed. The first is a generalized unsteady flow
hydrodynamic‘model known as DWOPER (Dynamic Wave Operational model) suited for
river systems. The second is a special unsteady flow model for predicting dam
break floods. The dambreak model, known as DAMBRK, develops the outflow hydro—
graph from a breached-dam including spillway outflows and routes the flow
through the downstream valley using a numerical hydrodynamic model.

The DWOPER model has been applied to many large rivers such as the
Mississippi, Ohio, Missouri, Arkansas, Columbia, Cumberland, Tennessee,
Susquehanna, and St. John's by the NWS as well as other federal agencies and
private consultants. The DAMBRK model is currently being used by the NWS as
well as several federal agencies including the Corps of Engineers, Water and
Power Resources Service, TVA, and Federal Energy Regulatory Commission to
develop flood inundation maps and evacuation plans for major dams within the
U.S. Also, many state agencies are using DAMBRK for similar purposes for the
myriad of small dams located within each state. Private consultants and '

Canadian and Central American agencies are likewise using the DAMBRK model.
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Both DWOPER and DAMBRK are one-dimensional hydrodynamic models based on an
implicit finite difference solution of the conservation form of the St. Venant
equations of unsteady flow. The equations consist of the conservation of mass
equation, i.e.,
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in which x is distance along the axis of the river, t is time, Q is discharge,

A is active cross—sectional area, A_ is inactive (off-channel storage) cross—

sectional area, q is lateral inflowo(positive) or outflow (negative), g is the
gravity acceleration constant, h is water surface elevatiom, B is wetted top

width of cross-section, vy is velocity of lateral inflow in direction of river—
axis (x—direction), S¢ is friction slope computed from Manning's equation, n is
the Manning n, R is the hydraulic radius approximated by (A/B), S, is the local
loss slope, K is an expansion (negative)--contraction (positive) coefficient,

We is the wind term, C,
of the wind relative to the velocity of the river flow, and w is angle between

is nonrdimensional wind coefficient, V. is the velocity

the wind direction and river flow direction. A 4-point weighted, implicit dif-
ference approximation is used to transform the non-linear partial differential
equations of unsteady flow into nomlinear algebraic equations. The 4—point

weighted difference approximations are:
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where K is a dummy parameter representing any variable in the above differential
equations, © is a weighting factor varying from 0.5 to 1. To insure uncondi-
tional linear numerical stability and provide good accuracy, © values nearer to

0.5 are recommended (Fread, 1974). The i subscript denotes a particular

Fread, D.L.: Numerical properties of implicit four-point finite difference
equations of unsteady flow, NOAA Tech. Memo NWS HYDRO-18, U.S. Dept. of
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cross—section located along the river, and the j superscript denotes a partic-
ular time within the solution domain. This scheme was first introduced by
Priessmann (1961) and is quite popular among modellers using implicit schemes,
e.g., Amein and Fang (1970), Fread (1973), and many others.

The resulting non-linear equations are applied to Ax reaches between river
sections having specified cross—sectional properties; the resulting system of
algebraic equations are solved by the Newfon-Raphson quadratic iterative tech-
nique (Amein and Fang, 1970). A special compact quad-diagonal matrix solution
technique (Fread, 1971) of the Gauss elimination variety is used to provide opti-
mal efficiency in solving the simultaneous system of linear equations generated
within the NewtomRaphson technique. The solution of the finite difference equa~
tions provides the water surface elevation and discharge at each specified cross—
section. The solutions are obtained when successive jterative values (usually
1-2) of elevation and discharge change less than a specified tolerance value.

The Ax reach lengths between cross—sections can be unequal. The solutions are

obtained at finite intervals of time as the solution is marched forward in time

by At steps which can be variable. The time steps can be selected according to

accuracy considerations and need not be selected according to the numerical sta~

bility constraints associated with explicit finite difference solution techniques.
DWOPER MODEL DESCRIPTION

The DWOPER model contains several features which facilitate its application
to a wide variety of unsteady flows occurring in rivers, reservoirs, or estuaries.

Cross—Sections

Cross-sections of irregular as well as regular geometrical shape.are accept—
able in DWOPER. Each cross—section is read-in as tabﬁlar values of channel width
and elevation, which together constitute a piece-wise linear relationship.
Experience has shown that in almost all instances the cross—section may be suf-
ficiently described with eight or less sets of widths and associated eleva~
tions. A low-flow cross—sectional area which can be zero is used to describe
the cross—section below the minimum elevation read-in. From this input, the
cross—sectional area associated with each of the widths is initially computed
within the model. During the solution of the unsteady flow equations, any areas

or widths associated with a particular water surface elevation are linearly
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interpolated from the piece-wise linear relationships of width and elevation
read-in or the area—elevation sets initially generated within the model.

Of f-Channel Storage

Dead storage areas wherein the flow velocity in the x-direction is comr
sidered negligible relative to the velocity in the active area of the cross—
section is a feature of DWOPER. Such dead or off-channel storage areas can be
used to effectively account for embayments, ravines, or tributaries which con-
nect to the flow channel but do not pass flow and serve only to store the flow.
Another effective use of off-channel storage is to model a heavily wooded flood
plain which stores a portion of the flood waters passing through the channel.

" In each of these cases, the use of zero velocity for the portion of the flood
waters contained in the dead storage area results in a more realistic simulation
of the actual flow than using an average velocity derived from the main flow
channel and the dead storage area. The dead storage cross—sectional properties
are described similarly to the active cross—sectional areas.

Roughness Coefficients

The Manning n is used to describe the resistance to flow caused by bed
forms, bank vegetation and obstructions, bend effects, and eddy losses. The
Manning n is defined for each channel reach bounded by gaging stations and is
specified as a function of either stage or discharge via a piece-wise linear
relation specified as input in tabular form. Linear interpolation is used to
obtain n for values of h or Q intermediate to the tabular values. Simulation
results are often sensitive to the Manning n. Although in the absence of neces—
sary data (observed stages and discharges), n can be estimated, best results are
obtainéd when n is adjusted to reproduce historical observations of stage and
discharge. Such an adjustment process is known as calibration which may be
either trial-and-error or an automatic technique described later.

Lateral Inflows

DWOPER incorporates tributary inflows via the lateral inflow term, q, in
Eqs. (1-2). These are considered independent of flows occurring in the river to
which they are added. They are read-in as a time series of flows with comstant
or variable time intervals. They may be specified for any Ax reach along the
river. Outflows may be simulated by assigning a negative sign to the flow.
Linear interpolation is used for flows at times other than the input intervals.

Initial Conditions

Initial conditions consisting of stage (water surface elevation) and dis—
charge at each cross—section must be provided before the unsteady flow equations
can be solved. DWOPER provides initial conditions via any of the following:

1) Estimated stage and discharge at each cross—section are read-in; 2) observed
stage at each cross—section where a gaging station is located and discharge at

the most upstream cross—section of the main stem river and each tributary are
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read-in; the remaining stages are automatically provided via linear interpolatioﬁ
and the discharges are determined automatically by summation of the flows from
upstream to downstream including tributary and/or lateral inflows; 3) computed
stages and discharges which have been saved from a previous unsteady flow
simulation; and 4) assumed steady flow and a backwater computation to obtain
stages upstream of that at the downstream cross—section which is read-in. The
equation used for the backwater computation is:
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in which h; is the unknown and A; and B, are known functions of h;. Eq. 9) is
solved by Newton—Raphson; it usually requires from one to three iterations.

Boundary Conditions

Boundary conditions must be specified in order to obtain solutions to the
unsteady flow equations. In fact, in most unsteady flow problems, the unsteady
disturbance is introduced into the flow at the boundaries or extremities of the
river system. DWOPER can readily accommodate either of the following boundary
conditions at the upstream extremities of the river system: 1) known discharge
hydrograph, erl - Q(t) = 0; 2) known stage hydrograph, hf+l - h(t) = 0. Down-
stream boundary conditions can include one of the following: 1) known discharge
hydrograph, Q£+l - Q(t) = 0; 2) known stage hydrograph, h§+1 - h(t) = 0; and a
known relationship between stage and discharge, i.e., a rating curve. The
rating may be single-valued and read-in as tabular (piece~wise linear) values of
stage and discharge; linear interpolation is used for intermediate values. The
rating may also be a loop rating curve generated internally from cross—section
and roughness properties of the downstream boundary section and the instanta-

neous water surface slope at the previous time step, i.e.,

5/3 i+l
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where N designates the downstream most cross—section. Hydrographs of stage or

discharge may be read-in at constant or specified irregular time intervals.

Enhancement of Computational Algorithm

DWOPER has automatic procedures contained within the finite difference solu-
tion algorithm to increase the robust nature of the fbur-point implicit method.
Rapidly rising hydrographs and nomlinear properties of the cross—sections due to
variations in the vertical and/or along the x—axis may cause computational prob-
lems which are manifested by nomconvergence in the NewtomRaphson iteration or by
erroneously low.computed depths at the leading edge of steep—fronted waves. When
either of these manifestations are sensed, an automatic procedure consisting of

two parts is implemented. The first reduces the current time step (At) by a
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factor of 1/2 and repeats the computations. If the same problem persists, At is
again halved and the computations repeated. This continues until a successful
solution is obtained or the time step has been reduced to 1/16 of the original
size. If a successful solution is obtained, the computational process proceeds
to the next time level using the original At. If the solution using At/16 is
unsuccessful, the © weighting factor is increased by 0.l and a time step of

At/2 is used. Upon achieving a successful solution, © and the time step are re-
stored to their original values. Unsuccessful solutions are treated by increas-—
ing © and repeating the computation until © = 1.0 whereupon the automatic pro-
cedure terminates and the solution with © = 1. and At/2 is used to advance the
solution forward in time now using the original © and At values. Often compu-—

tational problems can be overcome via one or two reductions in the time step.

Lock and Dam Internal Boundary Condition

A river system may include small dams with gates to pass the river flow in
such a way as to maintain desired water surface elevations on the upstream side
of the dam. A lock is provided for navigation of river craft past the dam.
DWOPER can accommodate any number of lock and dam (L&D) installations within the
river system being simulated. An internal boundary condition is used as opposed
to separating the river system into discrete portions and specifying external
boundary conditions applicable to the L&D. The internal boundary allows the
simultaneous simulation of the entire river system including any L&D. If the

pool elevation is controlled only by the gate operation, Eq. (1) is replaced by:
Q£+1 _ QJ+1 =0

1+1 an
and the conservation of momentum equation, Eq. (2), is replaced by:
jHlo_ =
h; h, =0 (12)

where ht is the target pool elevation which the dam operator attempts to maintain
via operation of the gates. The target pool elevation may be a constant value,
or it may be specified as a function of time and read-in as a time series. When
the simulated tailwater elevation exceeds a specified critical tailwater eleva-
tion, the flow is computed as governed by Eqs. (1) and (2).

Dendritic River Systems

An efficient solution technique for dendritic (tree-type) river systems is
utilized in DWOPER. This technique solves during a time step the unsteady flow
equations first for the main stem, and then for each tributary of the river sys—
tem. The tributary flow at the confluence with the main-stem river is treated
as lateral flow q which is first estimated when solving the equations for the
main stem. The tributary flow depends on its upstream boundary condition, lat-—
eral inflows along its reach, and the water surface elevation at the confluence
(downstream boundary for the tributary) which is obtained during the simulation
of the main stem. Due to the interdependence of the flows in the main stem and

its tributaries, the following iterative or relaxation algorithm is used:



requires about two times that of the quad-diagonal and only 0.0037 that of the o
full Gaussian. Of course, the multiple-channel formulation feature of DWOPER can -
be used for purely dendritic river systems having any order of tributaries.

Weir-Flow Bifurcations

In DWOPER, any number of Ax reaches along a channel may bypass flow to
another channel which may or may not connect back into the former channel at some
point downstream from the bifurcation. The flow in the bypass channel which may
affect the weir flow is accounted for by a submergence correction factor (K ).

In fact, depending on the relative elevations of the water surface in the bypass
channel (hbc) and the main channel (h), the flow can reverse and flow back into
the main channel. The crest elevation (hc) of the overbank section which acts as
the weir-flow bypass is specified. Each section has a discharge coefficient (C)
which may be estimated or obtained through trial-and-error calibration. The
location along the channel where the bifurcation(s) occur, the average crest

elevation of each such Ax reach, and the discharge coefficient are read-in as

input data. The weir-flow equation is:

q=CK_ (h-h )32 (20)
where: K, = 1.0 Y < 0.67 (21)
Kg = 1.0 - 27.8 (y - 0.67)3 Y > 0.67 (22)
Y= (hy, = h)/(h - b)) (23)

The weir-flow b1furcat10n can be used to simulate levee overtopping and
tlme-dependent levee crevasses. The overtopping and/or breach flow is then
routed through the flood plain which is considered to be a tributary. The trib-
utary may be hydraulically connected to the main river via a natural confluence
or a flap—gated gravity drainage pipe. Also, the tributary may not be connected
hydraulically with the main river; in this case the flow merely ponds within the
flood plain. Levees may be located on both sides of the flooding river.

Automatic Calibration

A critical task in the application of one-dimensional hydrodynamic models in
natural rivers in dendritic systems is the determination of the Manning n which
often varies with discharge or stage, and with distance along the river. DWOPER
has an option to automatically determine the optimum Manning n which will mini-
mize the difference between computed and observed values via a highly efficient
optimization technique (Fread and Smith, 1978). The Manning n may be constant or
have a piece~wise linear variation with discharge (or stage) for each reach of the
river bounded by gaging stations. The optimization technique is based on a scheme
of decomposing complex river systems of dendritic configuration. Computational
requirements are less than twice that required for a normal simulation run.

In automatic calibration, optimum Manning n values are sequentially

Fread, D.L. and G.F. Smith: Calibration technique for one-dimensional unsteady
flow models. Journ. Hvdranl. Div. ASAF 104 HUV7 Tulew =~ 1A27-1042 1070




q* = a q + (1-a) gq** a3) -
in which @ is a weighting factor (0 < @ { 1), q is the computed tributary flow -
at the confluence, q** is the previous estimate of q, and q* is the new estimate f
of q. Convergence is attained when q is sufficiently close to q**. Usually, one
or two iterations is sufficient; however, the o weighting factor has an important
influence on the algorithm's efficiency. Optimal values of @ can reduce the iter-
ations by as much as 1/2. A priori selection of @ is difficult since & varies
with each river system. Good first approximations for a are in the range,

0.6 < a < 0.8. DWOPER can accommodate any number of lst order tributaries.
Systems with 2nd order tributaries can sometimes be accommodated by reordering

the system, i.e., selecting another branch of the system as the main stem.

Multiple-Channel System

When the river system consists of bifurcations due to islands, mammade
bypasses, etc., such that the river system is not simply dendritic, an alter—
native computational formulation is used; it is based on three intermal boundary

equations at each junction, i.e.,

Q, +Q, - Qy +As/At =0 (14)
Q,2/(2gA;%) + h| - Q,%/(2g4,%) - h, = 0 1s)
Q,%/(284,%) + hy = Q32/(2844%) - hy = 0 (16)

in which subscripts denote the three river branches entering and exiting a junc—
tion, and (Aé) is the change in the junction storage. It is not possible to main-
tain a diagonally banded matrix for the coefficients introduced via Eqs. (14-16);
however, by using a unique numbering scheme for the cross—sections within the
river system and by properly introducing Eqs. (14-16) in the composition of the
coefficient matrix, the number and consequence of off-diagonal elements can be
minimized. Then, using a special matrix solution technique that operates only
on non-zero off-diagonal elements, an optimally efficient solution of the matrix
can be achieved. This method of simulating multiple channels maintains a nom
linear formulation of the entire system, thus retaining the Newton—Raphson iter—
ative equation solver, and yet performs the computations quite efficiently.
Expressions for total number of oper;tions (T) in solving the matrix are shown
below for the quad-diagonal algorithm used for only dendritic systems or a single
channel in DWOPER, the multiple-channel algorithm, and for comparison a full

Gaussian elimination algorithm:

T1 *38N ..ooeveveecccscccsecsss (quad-diagonal algorithm) a7

TZ =66 N + (26 N + 25) Jn ceeses (multi-channel algorithm) (18)

T3 o l%-N3 + 4N2 veeeeevescesses (full Gaussian algorithm) 19)
in which N is number of cross—sections, Jn is number of junctions. For example,
i1f N = 100 and J = 5, T, = 3800 x 2.5 = 9,500, T, = 19,725, and T, = 5,373,333;
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requires about two times that of the quad-diagonal and only 0.0037 that of ﬁhe o
full Gaussian. Of course, the multiple-channel formulation feature of DWOPER can h

be used for purely dendritic river systems having any order of tributaries.

Weir-Flow Bifurcations

In DWOPER, any number of Ax reaches along a channel may bypass flow to
another channel which may or may not connect back into the former channel at some
point downstream from the bifurcation. The flow in the bypass channel which may
affect the weir flow is accounted for by a submergence correction factor (K ).

In fact, depending on the relative elevations of the water surface in the bypass
channel (hbc) and the main channel (h), the flow can reverse and flow back into
the main channel. The crest elevation (h.) of the overbank section which acts as
the weir-flow bypass is specified. Each section has a discharge coefficient (C)
which may be estimated or obtained through trial-and-error calibration. The
location along the channel where the bifurcation(s) occur, the average crest

elevation of each such Ax reach, and the discharge coefficient are read-in as

input data. The weir-flow equation is:

q=CK_ (h-h )32 (20)
where: K, = 1.0 Y € 0.67 2
Kg = 1.0 - 27.8 (v - 0.67)3 Y > 0.67 (22)
Y= (hy = h)/(h=h) (23)

The weir-flow b1furcat10n can be used to simulate levee overtopping and
time—dependent levee crevasses. The overtopping and/or breach flow is then
routed through the flood plain which is considered to be a tributary. The trib~-
utary may be hydraulically connected to the main river via a natural confluence
or a flap-gated gravity drainage pipe. Also, the tributary may not be connected
hydraulically with the main river; in this case the flow merely ponds within the
flood plain. Levees may be located on both sides of the flooding river.

Automatic Calibration

A critical task in the application of one-dimensional hydrodynamic models in
natural rivers in dendritic systems is the determination of the Manning n which
often varies with discharge or stage, and with distance along the river. DWOPER
has an option to automatically determine the optimum Manning n which will mini-
mize the difference between computed and observed values via a highly efficient
optimization technique (Fread and Smith, 1978). The Manning n may be constant or
have a piece~wise linear variation with discharge (or stage) for each reach of the
river bounded by gaging stations. The optimization technique is based on a scheme
of decomposing complex river systems of dendritic configuration. Computational
requirements are less than twice that required for a normal simulation run.

In automatic calibration, optimum Manning n values are sequentially

Fread, D.L. and G.F. Smith: Calibration technique for one-dimensional unsteady
flow models. Journ. Hvdranl. Div. ASCF 104 HY7 Tulw =~n 1027-1042 1070




determined for each reach bounded by gaging stations, commencing with the most -
upstream reach, and progressing reach by reach in the downstream direction.
Tributaries are calibrated before the main stem river and their flows are added to
the main stem as lateral inflows. Discharge is input at the upstream boundary of
each river, while observed stages at the downstream gaging station of each reach is
used as the downstream boundary condition. Computed stages at the upstream bound-
ary are tested against observed stages at that point. Statistics of bias (@ ) and
root-mean-square (RMS) error are computed for several (j) ranges of dlscharge or
stage so that the Manning n can be calibrated as a function of discharge or

stage. For each range of discharge, an improved estimate of the optimum Manning n
(n §+ ) is obtained via a modified NewtomRaphson iterative algorithm, i.e.:

1eH K o (X - ng_l)
n, =qn--3_J _J k>2; §=1,2,...J (24)
J J ok - ¢k~l =
3 J
in which the k superscript denotes the number of iterations and ¢j is the bias

for the jth range. Eq. (24) can be applied only for the second and successive

iterations; therefore, the first iteration is made using the following algorithm:

n‘JS“l = n‘Jf (1.0 - 0.01 ¢§/|¢‘§|> k=1; §=1,2,...0 (25)

in which a small percentage change in n is made in the correct direction as
determined by the term (—¢§/|¢§|). The convergence properties of Eq. (24) are
quadratic with convergence usually obtained within 3 - 5 iterations. Improved
n values obtained via Eq. (24) are used and the cycle repeated until a minimum
RMS error for the reach is found. Then, the discharges computed at the down—
stream boundary using the optimum Manning n are stored internally and then input
as the upstream boundary condition for the next downstream reach.
DAMBRK MODEL DESCRIPTION

The DAMBRK model (Fread, 1977) synthesizes the outflow hydrograph due to a
dam failure and/or spillway flows. The earthen or concrete dam is assumed to
fail by either overtopping, piping, or collapse within a specified interval of
time. The time-dependent geometry of the breach is specified by simple param-
eters to describe a complete or partial breach. The effects of reservoir in~
flows, reservoir storage, and spillway outflows on the broad-crested weir flow
through the breach are accounted for via selection of one of two reservoir rout—
ing techniques, i.e., storage routing (level pool) or dynamic routing (St. Venant
equations). The effect of tailwater on the outflow is modelled with a submer—
gence correction factor. The outflow hydrograph is routed through the downstream
valley via the 4-point implicit difference solution of the conservation form of

the St. Venant equations. (This is the same as in the DWOPER model.) Provisions

Fread, D.L.,: The development and testing of a dambreak flood forecasting

model, Proc., Dam-Break Flood Modeling Workshop, U.S. Water Res. Council,
Wash., D.C., pp. 164-197, 1977.



are included in the model for routing supercritical or subcritical flﬁﬁé and

ey

accounting for tributary inflows. The effects of downstream obstructions such as

road embankments, bridges, and/or other dams are modelled as internal boundary h
conditions. The model can create additional cross-sections via linear interpola-
tion between the specified cross—sections; this option is an important con-
venience when modelling steep-fronted waves which require frequent computational
points along the river. Composite cross-sections with optional inactive flow
(storage) areas can be used with the St. Venant equations, or a modified version
of the St. Venant equations can be used to better treat substantial flood-plain
flows and the effects of a meandering river channel.

Breach Description

The DAMBRK model allows the user to input the failure time interval (t) and
the terminal size and shape of the breach. The shape is specified by (z), the
side slope of the breach, i.e., 1 vertical: z horizontal. Rectangular, triangu—
lar, or trapezoidal shapes may be specified. The final breach size is controlled
by z and the parameter (BB) which is the terminal width of the bottom of the
breach at elevation hbm' The model assumes the breach bottom width starts at a
point and enlarges to BB at a linear rate over the failure time interval (t).

During the simulation of a dam failure, the actual breach formation com
mences when the water surface elevation (h) within the reservoir exceeds a
specified value, hf. This feature permits the simulation of overtopping a dam
in which the breach does not form until a sufficient amount of water flows over
the crest of the dam. A piping failure may be simulated when he 1s a specified
elevation less than the height of the dam, hy.

Reservoir Outflow Hydrograph

The total reservoir outflow (Q) consists of broad-crested weir flow through

the breach (Qy) and flow through any spillway outlets Qg),

. = - 1.5 _ 2.5
where: Qb Kscv[3.l BB tb/T(h hb) + 2.45 z(h hb) ] (26)
= -1 1.5 -1 10,5 - 1.5
QS Kscs(h hg) + cg(h hg) + cd(h hd) + Qt 27)
= 2 2,20
c, = 1.0 +0.023 Q /[Bd h4(h hb)] (28)

in which hy is the breach bottom elevation evaluated as: h=h, - (hd-hbm) tb/Y,

ty is the time after the breach starts forming, c_, is the correction for velocity

v
of approach, By is the width of the reservoir at the dam, KS is the submergence
correction for tailwater effects on the breach and spillway outflow, and ht is
the tailwater elevation (water surface elevation immediately downstream of dam),
¢, 1s the uncontrolled spillway discharge coefficient, hs is the uncontrolled
spillway crest elevation, Cg is the gated spillway discharge coefficient, hg is
the center-line elevation of the gated spillway, ¢q is the discharge coefficient
for flow over the crest of the dam, and Q. is a constant (head independent)

outflow or leakage.



DAMBRK can use storage routing to compute the reservoir outflow, i.e.,

I -Q=ds/dt (29)
in which I is the reservoir inflow, Q is the total reservoir outflow, and dS/dt
is the time rate of change of reservoir storage volume.. Expressing Eq. (29) in
centered finite difference form where a prime (') superscript denotes values at
the time (t-At) and approximating S in terms of A, (the reservoir surface area)
result in the following expression:

(AS+A;) (h-h')/At + Q+ Q' - I -1I'=0 (30)
Since Q and AS are functions of h and all other terms are known, Eq. (30) can be
solved for the unknown h using Newton—-Raphson itefﬁtion. Once h is obtained,
Eqs. (26) and (27) can be used to obtain the total outflow (Q) at time (t).
Modified St. Venant Equations for Flood-Plain Flows

The St. Venant equations are modified (Fread, 1976) as follows:

3K Q) 3IK,Q) 3(KQ) @31)

c 4 A, T 3 q=0

Ix 9x 9x at
c L r
202 202 2
AL L L R N
ot 9x 9x 9x c 9x fc e
c L . r c
dh dh -
+ gAl(axz * Sfl) * gAr(er * Sfr) =0 32)

The parameters (Kc’ Ko Kr) proportion the total flow (Q) into the channel, left

flood plain, and right flood plain, respectively. These are defined as follows:

Kc =1/ + k, + kr) (33)
K2=k2/(1 +ky + kr) (34)
K_= kr/(l +ky + kr) (35)
2/3 1/2
Qz ncAl Rl Axc
and, kf. ='Q—=—A— -R— 'A—'— (36)
c nl c c XZ
Q a A R \2/3 [ax \1/2
=_r__¢_r |_Tr _c
k. = Q n A (R > Ax G7)
(o r Cc C r

Eqs. (36) and (37) represent the ratio of flow in the channel section to flow in

the left and right flood-plain sections, where the flows are expressed in terms

of the Manning equation with the energy slope approximated by the water surface

slope (Ah/Ax). The friction slope terms in Eq. (32) are similar to Eq. (3).
Multiple Dams and Bridges

The DAMBRK model can simulate the progression of a dambreak wave through a
downstream valley containing a reservoir created by another downstream dam, which

itself may fail due to being sufficiently overtopped by the wave emanating from .

Fread, D.L.: Flood routing in meandering rivers with flood plains, Proceedings,
Rivers '76, 3rd Ann. Symp of Waterways, Harbors & Coastal Eng. Div., ASCE,
Vol. I, Aug., pp. 16-35, 1976.
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the failure of the upstream dam. In fact, an unlimited number of reservoirs
located sequentially along the valley can be simulated. In this method a dam is
treated as an internal boundary condition where flow through a short Ax reach
containing the dam is governed by Eq. (11) and the following:
Q; = Q +Q (38)

in which Qp, and Qg are breach and spillway flow described by Eqs. (26-27).

Highway/railway bridges and their earthen embankments located downstream of
a dam may also be treated as internal boundary conditions. Eqs. (11) and (38)
are used at each bridge; the term Qs in Eq. (38) is defined as follows:

Q = C\/’—‘A +1(h;mh +1)1/2 + C gk (hh_ )3/2 (39)
in which Cp is a coeffic1ent of bridge flow, Cq is the coefficient of flow over
the road embankment, h, is the crest elevation of the embankment, and ks is a
submergence correction factor similar to K, as defined in Egs. (21) and (22).

Supercritical Flow

Downstream valley slopes greater than about 0.01 usually result in the flow
being supercritical. Therein, unlike subcritical flow the downstream boundary
is not required since flow disturbances cannot travel upstream. However, in
addition to the reservoir outflow, another upstream boundary condition similar
to Eq. (10) is used in DAMBRK. '

Landslide—-Generated Waves

Waves within reservoirs generated by landslides can be simulated in DAMBRK.
The volume of the landslide mass, its porosity, and time interval over which the
landslide occurs are input to the model. The landslide mass is deposited within
the reservoir in layers during small computational time steps, and simultaneously
the original dimensions of the reservoir are reduced accordingly. The time rate

of reduction in the reservoir cross—sectional area creates the wave during the

solution of the unsteady flow equations.
CONCLUDING REMARKS

The DWOPER model has generally reproduced observed stage hydrographs within
1-2 percent, and the DAMBRK model has reproduced observed flood crests within
2-15 percent. The computational efficiency of both models is most satisfactory;
over a wide range of applications typical CPU requirements are less than 1 minute.

Current river mechanics research in the Hydrologic Laboratory is the expamr
sion of the applicability of both models. The DWOPER model is being extended to
include sediment transport effects on hydraulic roughness and cross-section
geometry, ice jam and break-up effects on unsteady flows, flow proportioning into
channel and flood-plain for meandering rivers, bank storage and overbank infil-
tration losses. Updating algorithms such as the Kalman filter technique are
being investigated for enhancing the use of DWOPER in real-time flood fore—
casting. The DAMBRK routing algorithm is being improved for applications to

highly irregular cross-sections and mixed subcritical-supercritical flow.



